Concept of Operation and Data Requirements

DESDynl-L

Science Data Systems in the Decadal Survey Era Workshop, June 25-26, 2009

Steve Kempler

DESDynl-L Data Ground Systems Manager NASA/GSFC

Contributors: Gary Alcott, Scott Luthcke, Chris Lynnes, Michael Urban, Bruce Vollmer

Overview of Presentation

- Mission Overview
- End-to-End Data Flow Diagram
- Key Driving Science Data System (SDS) Design Requirements
- Science Data Product Suite Lidar
- SDS Architecture & Functional Diagram
- Algorithm-to-Production Software Process
- Data Storage and Archive Strategy
- Data Distribution Scenarios

DESDynI-L Mission Overview

- **DESDynI**: Deformation, Ecosystem Structure and Dynamics of Ice
- **Time-frame:** 2017 (2018) Launch, 5-year Mission, plus 3 years Data System Post Mission (mission ends, but data management does not)
- Mission Objectives:
 - Characterize the effects of changing climate on the carbon cycle
 - Determine biome and species level changes
 - Characterize the effects of changing land use on species habitats and carbon budget
- Orbit:
 - 400km, 91-day repeat for ecosystem sampling
- Instrument:
 - Multi-beam Lidar operating in the infrared

Key Driving DDC Design Requirements

- Mission life: 5 Years
- Number of input data sources: 9
- Estimated total volume to archive: 345 TB
- Data levels to process: L1 L3
- Processing rates: Start with 2X forward; 3X reprocess. Add 3X reprocessing each successive year of mission (X=processing a day of data in a day)
- Reprocessing frequency: 4 months
- Science Software Integration and Test (SSIT): Algorithms written by science team, integrated and archived at data center
- In addition:
 - Data ingest and metadata cataloging
 - Online data archive with online replication of critical data¹ and offsite backup
 - Data search and access
 - User support and outreach
 - Data processing as required
 - Project documentation
 - Lights-dim operations with 8x5 onsite support and off-hours automatic paging for remote support (8x7 for GPS data handling)

¹ Critical data are data that are irrecoverable, difficult, or time-consuming to reproduce; typically raw data, ancillary, and level 3 Science Data Systems in the Decadal Survey Era Workshop, June 25-26, 2009

DESDynl Science Data Product Suite - Lidar

Level 0 and other instrument Products

- Uncompressed, depacketized and in engineering units
- Engineering, GPS and Nav, StarTracker (3 trackers), Gyro data

Level 1 Lidar Instrument Products

- Precision Orbit Determination (POD)
- Precision Attitude Determination (PAD)
- Integrated Residual Analysis (IRA) for pointing, ranging and timing calibration
- Calibrated waveforms and ranges

Level 2/3 Science Products

- Geolocated Waveforms
- Gridded Science Products (5): seasonally, yearly, mission

Ancillary file data acquired each day

- Polar Motion/A1-UT1 from USNO
- Solar Mag. Flux from NOAA
- Surface Met. Data from NOAA
- Ocean topo. and wave from NOAA
- SLR data from CDDIS
- IGS GPS ground data
- IGS GPS orbit data

■ Static ancillary data (for the entire mission):

- Planetary Ephemeris (2 files)
- Gravity Fields (3 files)
- Time variable gravity (3 ATGRAV)
- BIH Tables (5 files)
- Mean Sea Surface (3 files)
- Tides supporting files
- DEMs, 100 m resolution (3 files)
- Misc. files

DESDynI-L Data Center (DCC) Architecture & Functional Diagram

Algorithm-to-Production Software Process

- 3 years prior to launch Begin capabilities/documentation, interface discussions, algorithm requirements meetings
- 2 years prior to launch Begin documenting interface agreements, collecting algorithm and data documentation
- 1.5 years prior to launch Procure testbed hardware for initial algorithm testing; Refine science software integration and test procedures
- 1 year prior to launch Procure full operations system hardware, system integration, and science software integration
- 8 months prior to launch Begin system testing with 'final' science software
- 4 months prior to launch Begin end-end testing with REALLY final science software; Continue to run test data through system
- October, 2017 (2018) Launch
- With first data Support launch and early checkout
- During life of mission Integrate improved algorithms, process/reprocess data
- During post mission Integrate improved algorithms, reprocess data

Data Storage and Archive Strategy

- Reuse existing open-source operational data processing and archive systems, thus removing new system development costs; No COTS software = No compatibility issues and upgrade maintenance
- Examine co-locating DESDynl data science management system with other science data systems to leverage/share existing infrastructure and personnel
- Purchase hardware yearly, the year before it is needed, to take advantage of lowering hardware costs
- Maximize use of data standards (e.g., metadata, format, software, others)
- Implement and shake out basic required data system; Once data arrive and are better understood, seek to integrate existing tools that help prepare data for science research
- Data system to be implemented in close coordination with the science team
- All technologies needed to meet the requirements exist.
 - With that said, plan to utilize SAN archive
 - Host-attached RAID is an adequate fallback if SAN prices do not drop sufficiently

Data Distribution Scenarios

- To accommodate the varied skills, knowledge, and needs of data and information users, a variety of data distribution scenarios will be available:
- Knowledgeable Users (e.g., Researchers) who know the specific data they are interested in
 - Perform Google-like web-based searches for data
 - Perform web-based searches by time or location
 - Data on-line, thus access via ftp (no data ordering necessary)
- Knowledgeable Users (e.g., Researchers) who are looking for specific known geophysical signatures
 - Explore and discover data with browse visualizations
 - Download desirable data when found
- Novice Users (e.g., could be applications researchers, students)
 - Search for known events at/or specific locations
 - Provide data translation information relevant to application
 - Download data/images using web mapping services standards
- Multi-sensor data users
 - Seemlessly provide access to local and remote datasets using OpenDAP or the latest best technology
 - Perform multi-site data access compatible to OGC standards

